کاربرد مدل شبکه عصبی مصنوعی در پیشبینی پاسخهای آمیخته بیماری قلبی
Authors
Abstract:
Background: In epidemiological and medical studies, sometimes researchers are faced for prediction of two response variables (simultaneously) based on a number of independent variables. When the response variable is mixed, according to established limits and absence of assumption, the classical statistical methods are not enough efficient for classification and prediction goals. The purpose of this study is using Artificial Neural Network (ANN) model to predict the mixed response variable in heart disease. Methods: A total of 276 cardiac patients who were discharged from Madani Hospital were studied as historical cohort, from October 2011 to March 2012. This sample was used to predict the cholesterol and also LDL levels of patients. Data was randomly divided into two sets: training (175 cases) and testing (91 cases) sets. Data analysis was made by ANN model with SCG algorithms in MATLAB software, version 7.11 and appropriateness of the model was assessed by the accuracy prediction. Results: The highest accuracy of prediction of mixed response variable was 51.76% for a four-layer ANN model. Conclusions: The ANN model is suggested to predict the mixed response variable in medical studies.
similar resources
کاربرد مدل شبکه عصبی مصنوعی در پیش بینی پاسخ های آمیخته بیماری قلبی
زمینه و هدف: در مطالعات اپیدمیولوژی و پزشکی، گاهی پژوهشگر با مواردی مواجه میشود که لازم است دو متغیر پاسخ را به صورت توام (همزمان) از روی تعدادی متغیر کمکی پیشبینی نماید. زمانی که متغیر پاسخ آمیخته باشد، با توجه به محدودیتها و برقرار نبودن برخی پیش فرضها، روشهای کلاسیک آماری برای مدلبندی و پیشبینی کارایی لازم را ندارند. هدف این مطالعه بکارگیری مدل شبکه عصبی مصنوعی برای پیشبینی متغیر پاس...
full textکاربرد شبکه عصبی مصنوعی جهت ارزیابی بیماری عروق کرونری قلب
Background and purpose: Since the human health is an essential issue in medical sciences, accurate predicting the individual's disease status is of great importance. Therefore, predicting with models minimum error and maximum certainty should be used. This study used artificial neural network model for predicting coronary artery disease (CAD) because it is more precise Comared to after models. ...
full textکاربرد مدل شبکه عصبی مصنوعی در پهنهبندی خطر زمینلغزش
ینلغزش بهعنوان یکی از مخاطرات طبیعی در مناطق کوهستانی محسوب میشود که هر ساله منجر به خسارات زیادی میشود. حوضه آبریز دوآب الشتر با داشتن چهرهای کوهستانی و مرتفع و شرایط طبیعی مختلف دارای استعداد بالقوه زمینلغزش است. هدف از این تحقیق پهنهبندی خطر زمینلغزش با استفاده از مدل شبکه عصبی مصنوعی در حوضه دوآب الشتر میباشد. بدین منظور ابتدا پزمارامترهای مؤثر در وقوع زمینلغزش استخراج و سپس لایه...
full textکاربرد شبکه عصبی مصنوعی در حسابرسی
چکیده بسیاری از فرآیندهای حسابرسی به سرعت در حال تغییرند. یکی از مسایل مهم حسابرسی این است که چگونه فناوری اطلاعات بر فرآیند حسابرسی ومهارتهای حسابرسی تأثیر میگذارد. حسابرسان باید از آمادگیهای لازم برای فعالیت در این محیط جدید برخورار باشند. یافتههای تازه در قلمرو فناوری اطلاعات و ارتباطات، حسابرسان را در نظارت و کنترل عملیات شرکت صاحبکار یاری میرسانند از جمله امکاناتی که در این محیط جدید...
full textطراحی شبکه عصبی مصنوعی برای مدلبندی پاسخهای دو متغیره آمیخته و کاربرد آن در دادههای پزشکی
Background & Objective: Mixed outcomes arise when, in a multivariate model, response variables measured on different scales such as binary and continuous. Artificial neural networks (ANN) can be used for modeling in situations where classic models have restricted application when some of their assumptions are not met. In this paper, we propose a method based on ANNs for modeling mixed binary a...
full textکاربرد شبکه عصبی مصنوعی جهت ارزیابی بیماری عروق کرونری قلب
سابقه و هدف: از آن جا یی که پیش بینی صحیح وضعیت بیماری افراد از اهمیت زیادی برخوردار است، لذا برای این پیش بینی بایستی از آن دسته مدل هایی استفاده کرد که دارای حداقل خطا و حداکثر اطمینان باشد. لذا در این مطالعه از روش شبکه عصبی مصنوعی که روش قوی تری نسبت به روش های موجود است جهت ارزیابی بسته بودن یا نبودن عروق کرونری قلب استفاده شد. مواد و روش ها: در این تحقیق از شبکه عصبی مصنوعی پرسپترون چند...
full textMy Resources
Journal title
volume 20 issue 113
pages 20- 28
publication date 2013-11
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023